Two Reversible $\boldsymbol{\sigma}$-Bond Metathesis Pathways for Boron-Palladium Bond Formation: Selective Synthesis of Isomeric Five-Coordinate Borylpalladium Complexes

Naohiro Kirai, Jun Takaya, and Nobuharu Iwasawa*
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

(S) Supporting Information

Abstract

Two reversible σ-bond metathesis pathways for $\mathrm{B}-\mathrm{B}$ bond activation to give borylpalladium complexes are demonstrated in the reaction of $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(0)$ complexes with $\mathrm{B}_{2} \mathrm{pin}_{2}$. These two pathways are connected by fluxional behavior of the $\mathrm{Si}-\mathrm{H}$ bond and can be efficiently controlled by the appropriate choice of phosphine ligand, enabling the selective synthesis of two types of five-coordinate borylpalladium complexes.

Late transition metal-promoted activation of the $\mathrm{B}-\mathrm{B}$ bond J of diboron to give borylmetal complexes is an important elementary step in numerous catalytic borylation reactions. ${ }^{1,2}$ The reaction generally proceeds via (1) oxidative addition of the $\mathrm{B}-\mathrm{B}$ bond to the electron-rich metal center or (2) transfer of a boryl group to $\mathrm{M}-\mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{N}$, halogen $)$, and a few examples of σ-bond metathesis with $\mathrm{M}-\mathrm{R}$ bonds ($\mathrm{R}=\mathrm{C}, \mathrm{B}$, etc.) have been reported. ${ }^{3}$ Especially in the Pd-catalyzed reactions, the formation of borylpalladiums is mostly limited to the former two pathways, despite the wide use of Pd in a variety of borylation reactions using diboron. ${ }^{4,5}$ The discovery of a new type of $B-B$ bond activation by Pd complexes would be highly useful for the development of new catalytic borylation reactions. Herein we report two reversible σ-bond metathesis pathways for $\mathrm{B}-\mathrm{Pd}$ bond formation in the reaction of $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(0)$ complexes with bis(pinacolato)diboron $\left(\mathrm{B}_{2} \mathrm{pin}_{2}\right)$ that are connected by fluxional behavior of the $\mathrm{Si}-\mathrm{H}$ bond. The two pathways can be efficiently controlled by the appropriate choice of phosphine ligand, enabling for the first time the selective synthesis of two types of five-coordinate borylpalladium complexes.

We previously reported a new PSiP-pincer-Pd-catalyzed dehydrogenative borylation of alkenes in which the key intermediate, a PSiP-borylpalladium complex, is proposed to be generated by the reaction of $\mathrm{B}_{2} \mathrm{pin}_{2}$ with the palladium hydride generated from the corresponding palladium triflate complex and $\mathrm{AlEt}_{3}{ }^{6}{ }^{\text {T }}$ This finding prompted us to investigate the reaction of $\mathrm{B}_{2} \mathrm{pin}_{2}$ with $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \operatorname{Pd}(0)$ complexes, which could act as palladium hydrides via oxidative addition of the $\mathrm{Si}-\mathrm{H}$ bond. ${ }^{7}$ Treatment of PMe_{3}-coordinated $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(0)$ complex 1a with 2 equiv of $\mathrm{B}_{2} \mathrm{pin}_{2}$ in benzene- d_{6} at 303 K for 24 h afforded the five-coordinate borylpalladium complex trans-(B, Si)-2a, in which the B and Si atoms are in apical positions (Scheme 1). ${ }^{8}$ Surprisingly, the same reaction of $\mathbf{1 b}$ bearing PPh_{3} instead of PMe_{3} selectively gave in good yield another type of fivecoordinate borylpalladium complex, cis- $(\mathrm{B}, \mathrm{Si})-\mathbf{3 b}$, having the B and Si atoms at equatorial and apical positions (Scheme 1).

Scheme 1. Selective Synthesis of trans-2 and cis-3

Generation of HBpin was also observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in both reactions. The structures of these complexes were characterized by X-ray analyses (Figure 1). The geometry around the metal center seems to be trigonalbipyramidal in both complexes. This is the first example of the synthesis and isolation of five-coordinate borylpalladium complexes. ${ }^{9}$ Facile formation of the five-coordinate structure would be attributed to the pyramidalized central $\mathrm{Si}\left(\mathrm{sp}^{3}\right)$ atom of the pincer ligand, which made the four-coordinate square-planar structure more strained. The stereochemistry of these complexes was confirmed to be retained in solution, as determined by NMR analyses [see the Supporting Information (SI)]. The configura-

Figure 1. ORTEP diagrams of the five-coordinate borylpalladium complexes (a) trans-(B,Si)-2a and (b) cis-(B,Si)-3b. Thermal ellipsoids are shown at the 50% probability level; H atoms and solvent molecules have been omitted for clarity. Selected bond lengths (\AA) and angles (deg) for trans-(B,Si)-2a: Pd-B, 2.120(8); Pd-Si, 2.396(2); Pd-P1, 2.350(2); Pd-P2, 2.312(2); Pd-P3, 2.304(2); P1-Pd-P2, 113.81(6); P2-Pd-P3, 131.67(6); P3-Pd-P1, 113.66(6). For cis-(B,Si)-3b: PdB, $2.095(9)$; Pd-Si, 2.338(2); Pd-P1, 2.371(2); Pd-P2, 2.448(2); PdP3, 2.394(2); P1-Pd-P2, 102.87(6); P2-Pd-P3, 113.11(7); P3-PdP1, 101.93(7).

[^0]tional stability of $\mathbf{2 a}$ and $\mathbf{3 b}$ is noteworthy since such fivecoordinate $\mathrm{Pd}(\mathrm{II})$ complexes are often proposed as transient intermediates in cis-trans isomerization reactions of 16 -electron $\mathrm{Pd}(\mathrm{II})$ complexes via an associative mechanism. ${ }^{10}$ Thus, this is a quite rare example of the selective formation and isolation of either a trans or a cis complex simply by changing one of the ligands in a five-coordinate Pd complex. ${ }^{11,12}$

Several experimental results shed light on the mechanism and the origin of the stereoselectivity as follows. Monitoring of the time dependence of the reaction of PPh_{3}-coordinated complex $\mathbf{1 b}$ with $\mathrm{B}_{2} \mathrm{Pin}_{2}$ at 303 K revealed that trans-($\left.\mathrm{B}, \mathrm{Si}\right)-\mathbf{2 b}$ was actually generated in the beginning along with HBpin, and $\mathbf{2 b}$ gradually disappeared as cis-(B, Si)- was formed with time (Table 1). At

Table 1. Time Course Analysis of the Reaction of $1 \mathbf{b}$ with $\mathrm{B}_{2} \mathrm{pin}_{2}$

$\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(\mathrm{O})$ 1b				
entry	time	1b	trans-(B,Si)-2b	cis-(B,Si)-3b
1	30 min	77\%	18\%	5\%
2	1 h	71\%	15\%	14\%
3	2 h	59\%	9\%	32\%
4	5 h	28\%	3\%	70\%

first, we considered the possibility that the initially formed trans(B, Si)-2b underwent thermal isomerization to $c i s-(\mathrm{B}, \mathrm{Si})-\mathbf{3} \mathbf{b}$. However, isolated trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 b}$ itself was confirmed to be mostly stable in benzene $-d_{6}$ at 303 K even after 24 h (14% of $\mathbf{2 b}$ was converted to $\mathbf{3 b}$), indicating that such thermal isomerization was negligible under the reaction conditions.

In view of the slow isomerization of trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 b}$ under thermal conditions, the possibility that $\mathrm{B}_{2} \mathrm{pin}_{2}$ or HBpin might be involved in this isomerization process was investigated. Although treatment of $\mathbf{2 b}$ with $\mathrm{B}_{2} \mathrm{pin}_{2}$ caused no reaction, it was a surprise to find that $\mathbf{2 b}$ actually reacted with 1 equiv of HBpin within 1 h at 303 K to give $\mathbf{1 b}$ in 65% yield along with the formation of $\mathrm{B}_{2} \mathrm{pin}_{2}$ (65% as determined by GC) (Scheme 2a). Thus, the B-Pd bond

Scheme 2. Reversibility of B-Pd bond formation

${ }^{a} 2 b: 5 \%, 3 b: 30 \%{ }^{b} 2 b: 2 \%, 3 b: 78 \%{ }^{c}$ GC yield. ${ }^{d} 2 a: 96 \%$.
formation is reversible. The same reaction of $c i s-(\mathrm{B}, \mathrm{Si})-\mathbf{3 b}$ with HBpin also afforded $\mathbf{1 b}$ and $\mathrm{B}_{2} \mathrm{pin}_{2}$, but in lower yield (ca. 20\%). Both reactions finally came to equilibrium after 24 h to give a ca. 70:30 $\mathbf{1 b} \mathbf{\mathbf { b }} \mathbf{3}$ mixture. These results indicate that the formation of trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 b}$ is kinetically favored but also reversible and that the reaction affords the thermodynamically more stable product, cis-($\mathrm{B}, \mathrm{Si})-\mathbf{3 b}$, as the major product in 24 h . Furthermore, it was
found that PMe_{3}-coordinated trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 a}$ scarcely reacted with 1 equiv of HBpin, giving 1a in only 3% yield after 1 h (Scheme 2b). This result indicates that in the case of $\mathrm{PMe}_{3}{ }^{-}$ coordinated complexes, the reverse reaction of the kinetic product, trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 a}$, is very slow at room temperature because of the stronger coordination of PMe_{3} than $\mathrm{PPh}_{3}{ }^{13,14}$ Thus, the two reaction pathways to give the trans- or cis- $(\mathrm{B}, \mathrm{Si})$ product are controllable by the appropriate choice of the monophosphine ligand (Figure 2). The relative energy differ-

Figure 2. Two reversible B-Pd bond formation reactions.
ences of $\mathbf{1 - 3}$ were estimated from the equilibrium constants for $\mathbf{1 b}$ and $\mathbf{3 b}$ and for $\mathbf{1 a}$ and $\mathbf{2 a}\left(\mathrm{HBpin} / \mathrm{B}_{2} \mathrm{pin}_{2}\right.$-mediated reaction) and for the phosphine-exchange reactions of 1a-3a with PPh_{3} at 298 K (Table 2; see the SI for details). These studies clarify that (1) cis- $(\mathrm{B}, \mathrm{Si})-3$ is more stable than trans- $(\mathrm{B}, \mathrm{Si})-2$ by $2-3 \mathrm{kcal} /$ mol for both phosphine ligands; (2) the PMe_{3}-coordinated borylpalladium complex is more stable than PPh_{3}-coordinated one by ca. $6 \mathrm{kcal} / \mathrm{mol}$ for each isomer; and (3) PPh_{3}-coordinated trans- $(\mathrm{B}, \mathrm{Si})-\mathbf{2 b}$ is less stable than the starting complex $\mathbf{1 b}$, whereas PMe_{3}-coordinated trans- $(\mathrm{B}, \mathrm{Si})-2 \mathbf{a}$ is more stable than 1a.

Table 2. Energies of 1-3 (in kcal/mol) Relative to 1a at 298 K

$\mathbf{2 a}$	-1.9	$\mathbf{1 a}$	0.0	$\mathbf{3 a}$	-4.1
$\mathbf{2 b}$	+4.4	$\mathbf{1 b}$	+2.5	$\mathbf{3 b}$	+1.5

Density functional theory (DFT) calculations indicated that there exist two distinct reaction pathways from 1 and $\mathrm{B}_{2} \mathrm{pin}_{2}$ to give trans- $(\mathrm{B}, \mathrm{Si})-2$ and cis- $(\mathrm{B}, \mathrm{Si})-3$ through reversible oxidative addition/reductive elimination of the $\mathrm{Si}-\mathrm{H}$ bond with Pd (i.e., fluxional behavior of $\mathrm{Si}-\mathrm{H}$ bond) (Figure 3). ${ }^{15-17}$ The fivecoordinate trans- $(\mathrm{B}, \mathrm{Si})$ borylpalladium complex \mathbf{E} is formed through the reaction of $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \operatorname{Pd}(0)$ complex \mathbf{A} and B_{2} [a model of $\mathrm{B}_{2} \mathrm{pin}_{2}$ in which $B=\mathrm{B}$ (ethylene glycolato)] via transition state $\mathrm{TS}^{\mathrm{BC}}$, leading to square-planar borylpalladium complex D. Coordination of PMe_{3} to \mathbf{D} affords \mathbf{E}. ${ }^{18}$ On the other hand, A can function as a palladium hydride, F, through reversible oxidative addition/reductive elimination of the $\mathrm{Si}-\mathrm{H}$ bond with Pd via $\mathrm{TS}^{\mathrm{AF}}$, as previously proposed. ${ }^{7}$ The pathway to cis- $(\mathrm{B}, \mathrm{Si})$ complex I involves the reaction of \mathbf{F} and B_{2} via $\mathrm{TS}^{\mathrm{GH}}$. Dissociation of HB (a model of HBpin) from complex \mathbf{H} followed by coordination of PMe_{3} results in the formation of cis complex I as a more stable product than the trans complex \mathbf{E} by $4.8 \mathrm{kcal} / \mathrm{mol}$. Generation of the coordinatively unsaturated η^{2} -$(\mathrm{Si}-\mathrm{H}) \operatorname{Pd}(0)$ complex \mathbf{A} in the initial step is strongly supported by the experimental result that addition of 1 equiv of phosphine significantly retarded the reaction of 1 with B_{2} pin $_{2}$ (see the SI). ${ }^{19}$ Both $\mathrm{Pd}-\mathrm{B}$ bond-forming steps ($\mathrm{TS}^{\mathrm{BC}}$ and $\mathrm{TS}^{\mathrm{GH}}$) are easily feasible energetically, while the conversion of \mathbf{A} to \mathbf{F} ($\mathbf{T S}^{\mathrm{AF}}$) requires the highest activation energy through the reaction $\left(\mathrm{TS}^{\mathrm{BC}}=+16.5, \mathrm{TS}^{\mathrm{GH}}=+15.8, \mathrm{TS}^{\mathrm{AF}}=+24.1 \mathrm{kcal} / \mathrm{mol}\right)$. Therefore, the formation of \mathbf{E} via $\mathbf{T S}^{\mathrm{BC}}$ is the kinetically favored

Figure 3. Free energy profiles calculated using DFT at the PW91PW91/[6-31G(d,p)/LANL2DZ] level in THF $(\mathrm{PCM}) . B_{2}$ is a model of B_{2} pin ${ }_{2}$ in which the pinacolato moiety is replaced by ethylene glycolato.
pathway, and the formation of I via $\mathbf{T S}^{\mathrm{AF}}$ followed by $\mathbf{T S}^{\mathbf{G H}}$ is the thermodynamically favorable process. ${ }^{20}$ It is clear that the kinetic pathway becomes easily reversible in the case of the PPh_{3} system according to the energy relationships clarified in Table 2.

The core structures of the transition states involved in $\mathrm{B}-\mathrm{Pd}$ bond formation are depicted in Figure 4. TS ${ }^{\text {BC }}$ is best described

c) --------------------------

$\mathrm{P} 1-\mathrm{Pd}-\mathrm{P} 2=124.2(\mathrm{deg})$

Figure 4. Core structures of $(a, b) \mathbf{T S}^{B C}$ and (c, d) $\mathbf{T S}^{\mathrm{GH}}$: (a, c) side views; (b, d) front views.
as a structure in which the $\mathrm{Si}-\mathrm{H}$ bond is mostly cleaved and the $\mathrm{B} 1-\mathrm{H}$ bond of the borane is forming on Pd (Figure 4a,b). This structure can be regarded as the TS for a σ-bond metathesis reaction between the $\mathrm{B} 1-\mathrm{B} 2$ bond and the $\mathrm{H}-\mathrm{Pd}$ bond of the transient trigonal-pyramidal palladium hydride generated by oxidative addition of the $\mathrm{Si}-\mathrm{H}$ bond to $\mathrm{Pd}(0)$ (similar to $\mathbf{T S}^{\mathrm{AF}}$). In $\mathrm{TS}^{\mathrm{GH}}$, the $\mathrm{B} 2-\mathrm{H}, \mathrm{H}-\mathrm{Pd}$, and $\mathrm{B} 1-\mathrm{Pd}$ bond lengths are 1.40 , 1.74, and $2.26 \AA$, respectively, indicating that formation of the $\mathrm{B} 2-\mathrm{H}$ and $\mathrm{B} 1-\mathrm{Pd}$ bonds and cleavage of the $\mathrm{B} 1-\mathrm{B} 2$ and $\mathrm{H}-\mathrm{Pd}$ bonds proceed simultaneously in a σ-bond metathesis reaction (Figure 4c,d). No Pd(IV) intermediates were found before and after $\mathbf{T S}^{\mathbf{B C}}$ and $\mathbf{T S}{ }^{\mathbf{G H}}$ by intrinsic reaction coordinate calculations. This is the first demonstration of a σ-bond metathesis mechanism involvinig a $\mathrm{B}-\mathrm{B}$ bond and $\mathrm{Pd}-\mathrm{H}$ bond, ${ }^{21}$ and it should provide new mechanistic aspects of the activation of $B-B$ bonds. It should be noted that the $\operatorname{PSi}\left(s p^{3}\right) P$ pincer ligand would facilitate the formation of a six-coordinatelike structure around Pd in these transition states, with the $\mathrm{P} 1-$
$\mathrm{Pd}-\mathrm{P} 2$ angles largely bent away from $180^{\circ}\left(115.5^{\circ}\right.$ in $\mathbf{T S}^{\mathrm{BC}}$; 124.2° in $\left.\mathbf{T S}^{\mathbf{G H}}\right) .{ }^{22}$ This reaction is quite unique in that (1) two reversible σ-bond metathesis pathways for $\mathrm{B}-\mathrm{Pd}$ bond formation via $B-B$ bond activation are demonstrated; (2) the two pathways are connected via fluxional behavior of the $\mathrm{Si}-\mathrm{H}$ bond; and (3) the appropriate choice of monophosphine ligand enables efficient control of the two pathways, leading to the stereoselective synthesis of two types of borylpalladium complexes.

In conclusion, we have demonstrated two reversible σ-bond metathesis pathways for $\mathrm{B}-\mathrm{Pd}$ bond formation in the reaction of $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(0)$ complexes with $\mathrm{B}_{2} \mathrm{pin}_{2}$ that are connected by fluxional behavior of $\mathrm{Si}-\mathrm{H}$ bond. The two pathways can be efficiently controlled by the appropriate choice of the phosphine ligand, enabling the selective synthesis of two types of fivecoordinate borylpalladium complexes. We envision that such σ bond metathesis reactivity of $\mathrm{PSiP}-\mathrm{Pd}$ (II) complexes in $\mathrm{B}-\mathrm{B}$ bond activation will open up new possibilities for the development of new borylation reactions. Further mechanistic studies and the development of new synthetic reactions utilizing these phenomena are ongoing in our group.

ASSOCIATED CONTENT

Supporting Information

Experimental computational details; spectral and analytical data for 1-3; and crystallographic data for $1 \mathbf{1 a}, 2 \mathrm{a}, 2 \mathrm{~b}, 3 \mathrm{a}$, and 3 b (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

niwasawa@chem.titech.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis" (22105006), a Grant-in-Aid for Scientific Research (A) (24245019), and a Grant-in-Aid for Young Scientists (A) (24685006) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

REFERENCES

(1) For reviews of borylmetal complexes, see: (a) Braunschweig, H. Angew. Chem., Int. Ed. 1998, 37, 1786. (b) Irvine, G. J.; Gerald Lesley, M. J.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem. Rev. 1998, 98, 2685. (c) Braunschweig, H.; Colling, M. Coord. Chem. Rev. 2001, 223, 1.
(d) Aldridge, S.; Coombs, D. L. Coord. Chem. Rev. 2004, 248, 535.
(e) Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem., Int. Ed. 2006,

45, 5254. (f) Kays, D. L.; Aldridge, S. Struct. Bonding 2008, 130, 29.
(g) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009, 3987.
(h) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
(2) For reviews of metal-catalyzed reactions of diboron, see: (a) Marder, T. B.; Norman, N. C. Top. Catal. 1998, 5, 63. (b) Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2000, 611, 392. (c) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271. (d) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (e) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717. (f) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535. (g) Lillo, V.; Bonet, A.; Fernández, E. Dalton Trans. 2009, 2899. Also see: (h) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (i) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Org. Biomol. Chem. 2010, 8, 2667. (j) Ishiyama, T.; Miyaura, N. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2011; Vol. 1, pp 135-169.
(k) Suginome, M.; Ohmura, T. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2011; Vol. 1, pp 171-212. (1) Pilarski, L. T.; Szabó, K. J. Angew. Chem., Int. Ed. 2011, 50, 8230.
(3) For examples of σ-bond metathesis reactions of $\mathrm{B}-\mathrm{B}$ bonds with $M-X$ bonds $(X=C, B)$ to give $M-B$ bonds, see: (a) Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 1995, 117, 4403. (b) Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G. Chem. Commun. 1997, 53.
(c) Dang, L.; Zhao, H.; Lin, Z.; Marder, T. B. Organometallics 2008, 27, 1178. (d) Braunschweig, H.; Bertermann, R.; Brenner, P.; Burzler, M.; Dewhurst, R. D.; Radacki, K.; Seeler, F. Chem.—Eur. J. 2011, 17, 11828. For a review of σ-complex-assisted metathesis, see: (e) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578.
(4) For reviews of Pd-catalyzed borylation reactions using diboron, see ref 2. For recent examples, see: (a) Selander, N.; Willy, B.; Szabó, K. J. Angew. Chem., Int. Ed. 2010, 49, 4051. (b) Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 134. (c) Xiao, B.; Li, Y.-M.; Liu, Z.-J.; Yang, H.-Y.; Fu, Y. Chem. Commun. 2012, 48, 4854.
(5) Fernández and Gulyás reported a Pd-catalyzed diboration reaction of alkenes in which transmetalation of an alkylpalladium intermediate with diboron was proposed as a catalyst regeneration step, but no experimental or theoretical support for this has been demonstrated. See ref 2 i .
(6) The square-planar PSiP-borylpalladium complex has been isolated and structurally characterized. See: Takaya, J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 12980.
(7) Takaya, J.; Iwasawa, N. Organometallics 2009, 28, 6636.
(8) Isolation of 2 a from excess $\mathrm{B}_{2} \mathrm{pin}_{2}$ in Scheme 1 was unsuccessful because of its high solubility. Pure 2a was obtained by the reaction of square-planar borylpalladium with PMe_{3} followed by recrystallization (see the SI for details).
(9) Synthesis and structural analysis of borylpalladium complexes are rather limited compared with boryl complexes of Pt or group 8 or 9 metals. See: (a) Onozawa, S.; Hatanaka, Y.; Sakakura, T.; Shimada, S.; Tanaka, M. Organometallics 1996, 15, 5450. (b) Onozawa, S.; Tanaka, M. Organometallics 2001, 20, 2956. (c) Onozawa, S.; Tanaka, M. J. Synth. Org. Chem., Jpn. 2002, 60, 826. (d) Braunschweig, H.; Gruss, K.; Radacki, K.; Uttinger, K. Eur. J. Inorg. Chem. 2008, 1462. (e) Zhu, Y.; Chen, C.-H.; Fafard, C. M.; Foxman, B. M.; Ozerov, O. V. Inorg. Chem. 2011, 50, 7980.
(10) For examples of associative isomerization via five-coordinate Pd(II) complexes, see: (a) Anderson, G. K.; Cross, R. J. Chem. Soc. Rev. 1980, 9, 185. (b) Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1981, 54, 1868. (c) Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
(11) For references on five-coordinate Pd complexes, see: (a) Albano, V. G.; Natile, G.; Panunzi, A. Coord. Chem. Rev. 1994, 133, 67. (b) Favez, R.; Roulet, R. Inorg. Chem. 1981, 20, 1598.
(12) The observation of two types of isomers of five-coordinate Pt complexes $[\operatorname{PtMe}(\mathrm{X})(\stackrel{\square}{\mathrm{NN}})($ alkene $)]$ and the isolation and structural characterization of one of them by using appropriate X and alkene ligands have been reported. See: Albano, V. G.; Monari, M.; Orabona, I.; Ruffo, F.; Vitagliano, A. Inorg. Chim. Acta 1997, 265, 35.
(13) After 24 h: 1a, 15\%; 2a, 75\%; 3a, 10\%.
(14) The ${ }^{31} \mathrm{P}$ NMR spectrum showed that trans-($\left.\mathrm{B}, \mathrm{Si}\right)-\mathbf{2 b}$ is in equilibrium with a square-planar borylpalladium complex, $\mathbf{5}$, and free PPh_{3} at room temperature. It is estimated that $\mathbf{2 b}$ is slightly more stable than 5 by $0.2 \mathrm{kcal} / \mathrm{mol} . \mathrm{PMe}_{3}$-coordinated 2 a did not shows such dissociation behavior even under heating conditions. We assume that the electron-donating nature of the PMe_{3} ligand is the main reason for the stability of 2 . See the SI.
(15) The DFT calculations were carried out with model complexes in which the Bpin moiety was replaced by B (ethylene glycolato) and PMe_{3} was the monophosphine ligand. The energies include all of the reagents in all of the structures and are expressed relative to 1 a _calc $+\mathrm{B}_{2} \mathrm{pin}_{2}$.
(16) For early theoretical studies of the reaction of Pd complexes with diboron, see: (a) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 742. (b) Sakaki, S.; Kikuno, T. Inorg. Chem. 1997, 36, 226.
(17) Interconversion between $\eta^{2}-(\mathrm{Si}-\mathrm{H}) \mathrm{Pd}(0)$ and $\mathrm{H}-\mathrm{Pd}-\mathrm{Si}$ complexes via oxidative addition/reductive elimination of the $\mathrm{Si}-\mathrm{H}$ bond has been reported. See: (a) Boyle, R. C.; Mague, J. T.; Fink, M. J. J. Am. Chem. Soc. 2003, 125, 3228. (b) Boyle, R. C.; Pool, D.; Jacobsen, H.; Fink, M. J. J. Am. Chem. Soc. 2006, 128, 9054. (c) Reference 7. Also see: (d) Suh, H.-W.; Schmeier, T. J.; Hazari, N.; Kemp, R. A.; Takase, M. K. Organometallics 2012, 31, 8225. (e) Mitton, S. J.; Turculet, L. Chem.Eur. J. 2012, 18, 15258.
(18) As indicated in ref 14 and Table 2, the experimentally estimated difference in the energies of $\mathbf{2 a}$ and square-planar borylpalladium 5 is 6.5 $\mathrm{kcal} / \mathrm{mol}$. Thus, this model calculation seems to overestimate the stability of \mathbf{D} and/or underestimate the stabilities of phosphinecoordinated complexes 1a_calc, E, and I. However, the relative energies of 1a_calc, E, and I are in good agreement with the experimetally estimated values.
(19) Pt-mediated dehydrogenative coupling of borane was reported to proceed via σ-bond methathesis without dissociation of the phosphine ligand. See: Braunschweig, H.; Brenner, P.; Dewhurst, R. D.; Guethlein, F.; Jimenez-Halla, J. O.; Radacki, K.; Wolf, J.; Zöllner, L. Chem.-Eur. J. 2012, 18, 8605.
(20) These results also afford useful insight into the reaction mechanism for the formation of the square-planar borylpalladium complex in the catalytic dehydrogenative borylation (see ref 6). Detailed mechanistic studies under such conditions are ongoing, and the results will be reported in due course.
(21) Theoretical studies have proposed σ-bond metathesis reactions of $\mathrm{Pd}-\mathrm{C}$ with $\mathrm{B}-\mathrm{X}$ to give $\mathrm{C}-\mathrm{B}$ and $\mathrm{Pd}-\mathrm{X}$ bonds. See: (a) Cui, Q .; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 1383. (b) Lam, K. C.; Marder, T. B.; Lin, Z. Organometallics 2010, 29, 1849.
(22) For utilization of the PSiP pincer ligand, see: (a) Reference 17e and references cited therein. (b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254. (c) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13, 1698. (d) Takaya, J.; Iwasawa, N. Dalton Trans. 2011, 40, 8814.

[^0]: Received: January 10, 2013
 Published: February 5, 2013

